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Abstract

An increase in the number of citizen science programs has prompted an exam-
ination of their ability to provide data of sufficient quality. We tested the abil-
ity of volunteers relative to professionals in identifying invasive plant species,
mapping their distributions, and estimating their abundance within plots. We
generally found that volunteers perform almost as well as professionals in
some areas, but that we should be cautious about data quality in both groups.
We analyzed predictors of volunteer success (age, education, experience, sci-
ence literacy, attitudes) in training-related skills, but these proved to be poor
predictors of performance and could not be used as effective eligibility crite-
ria. However, volunteer success with species identification increased with their
self-identified comfort level. Based on our case study results, we offer lessons
learned and their application to other programs and provide recommendations
for future research in this area.

Introduction

Citizen science represents a partnership between volun-
teers and scientists to address research questions. These
partnerships have expanded in number and scope as
a way to connect scientific research to public outreach
and education while providing additional resources to
professional surveys (Bonney et al. 2009; Lepczyk et al.
2009). Data collected by citizen scientists inform natu-
ral resource management (Brown et al. 2001), environ-
mental regulation (Penrose and Call 1995), and scientific
research (Cooper et al. 2007). Therefore, data quality is
paramount and could have far-reaching environmental,
social, and/or political implications (Engel and Voshell
2002).

Several studies have examined data quality in citizen
science programs by determining predictors of partici-
pant success (Danielsen et al. 2005). Accuracy rates within
these programs tend to vary, and results are rarely made

available to the larger citizen science community. Stan-
dardizing monitoring protocols, designed by professionals
and field-tested with citizen scientists working under re-
alistic conditions, can improve data quality and analyses
(Delaney et al. 2008).

We tested the ability of volunteers to conduct an inva-
sive plant species monitoring protocol following 1 day of
training. We tested participants’ ability to identify species
and implement the protocol compared with professionals
to determine eligibility criteria by examining which fac-
tors were most strongly associated with performance. To
our knowledge, no other study has yet used social predic-
tors to assess success in such programs.

Methods

Participant recruitment

We recruited participants from existing volunteer net-
works (typical of citizen science programs) and provided
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them with a short survey. We recorded demographic in-
formation and willingness to attend the training or serve
in a control group. This resulted in self-selection of par-
ticipants, so we also collected demographic information
from nonparticipants (N = 166) to ensure that our ex-
perimental group adequately represented the volunteer
population.

In 2009, we held trainings at the University of
Wisconsin Arboretum, Madison, Wisconsin (N = 31),
and at Colorado State University’s Environmental Learn-
ing Center, Fort Collins, Colorado (N = 28). University
professors, graduate students, and land managers work-
ing with invasive plants participated as professionals (WI:
N = 31; CO: N = 21). Some professionals were not plant
taxonomists, but all had extensive field experience with
invasive plant species prior to participation.

Evaluation

We administered evaluations to participants using the
pretest/posttest control group design, with the control
group (untrained participants) receiving a pretraining
evaluation only (Campbell and Stanley 1963). The pre-
training evaluation collected information on participant
demographics, personal behavior and engagement, sci-
ence literacy, and attitudes toward the environment
and technology (Friedman 2008). Participants rated their
level of experience with certain skills: no experience,
little experience, some experience, proficient, or expert
(Table 1).Personal behavior and engagement were as-
sessed using statements related to how frequently in-
dividuals participate in various activities: never, a few
times each year, each month, every week, or every day
(Table 1). Participants also noted their comfort in iden-
tifying the plant species taught during the training us-
ing a five-point response: very uncomfortable to very
comfortable.

We adopted standard scales to assess science literacy,
attitude toward the environment, and attitude toward
technology (Brossard et al. 2005). Participants responded
to the standard science and engineering indicators ques-
tion: “Please tell us in your own words what it means to
study something scientifically” (National Science Board
1996). We asked two additional questions related to sci-
ence literacy but specific to the content covered in our
training: “write a research question that can be answered
by collecting data on invasive species” and “how would
you set up a sampling design to answer this research
question?”

Attitude toward the environment was assessed with
a subset of the new environmental paradigm scale (fre-
quently used measure of public environmental concern;
Stern et al. 1995) with the addition of several addi-

tional scale items selected following the guidelines of
Marcinkowski (1997; Table 1). Responses ranged from
strongly disagree to strongly agree. We assessed attitude
toward technology with the computer attitude scale us-
ing the same five responses (Table 1; Nickell and Pinto
1986).

Training workshops

The training included introductions to invasive species,
plant identification, GPS use, sampling design, and a sam-
pling protocol (see section ”Sampling Protocol for Inva-
sive Plant Species”). We selected six species at each train-
ing site for species identification training. Species selected
included three easily recognizable species and three that
could be easily confused with other species (Table 2).
Although subjective, these classifications were based on
experience with how easily volunteers can identify these
species in the field.

Sampling protocol for invasive plant species

Barnett et al. (2007) described a sampling design for in-
vasive plant species that integrates mapping techniques
with a 168-m2 plot to monitor species distributions and
abundance (Fig. 1). The protocol generates data compara-
ble to the U.S. Forest Service’s Forest Inventory and Anal-
ysis Program, the National Institute of Invasive Species
Science, the U.S. Fish and Wildlife Service’s Invasive and
Volunteers Program, and the National Ecological Obser-
vatory Network. We modified this protocol to accommo-
date volunteers. To map species, we asked participants to
record point locations only. For plot-based assessments,
participants recorded data for those species they had been
taught to identify. Within each plot (Fig. 1), volunteers
recorded presence of each target species and cover of each
shrub and tree species. S(he) also estimated herbaceous
cover in three vegetation of 1-m2 subplots (Fig. 1).

Skills testing

Volunteers performed four tasks (plant identification,
GPS use, plot implementation, plot setup) to test skills
taught in the training. The first tested volunteers’
ability to identify the six target plant species. We tagged
125 plants (target and nontarget species) along estab-
lished trails with an identification number. Volunteers
and professionals walked through each search area, iden-
tifying target species as they were encountered. Volun-
teers also recorded waypoints (i.e., datum, zone, univer-
sal transverse mercator [UTM] easting, UTM northing, ac-
curacy) for five marked stakes. To test navigation skills,
participants recorded the name of the stake marking a
waypoint saved in their GPS unit. Five plots were set up

434 Conservation Letters 4 (2011) 433–442 Copyright and Photocopying: c©2011 Wiley Periodicals, Inc.



A. W. Crall et al. Assessing citizen science data quality

Table 1 Results of reliability analyses (item total correlation, alpha if itemdeleted,Cronbach’s alpha) for experience, attitude toward theenvironment, and

attitude toward technology indices. Indices were computed by summing the response for each item after reversed items had been recoded. Statements

included in the new environmental paradigm scale are marked with an asterisk

Item total Alpha if Cronbach’s

Index correlation item deleted alpha

Experience index: skills, personal behavior, and engagement 0.88

Vegetation sampling design 0.56 0.88

Plant identification 0.67 0.87

Invasive plant identification 0.77 0.86

Vegetation monitoring 0.68 0.87

Volunteering for environmental organizations 0.44 0.89

Attending community events related to environmental issues 0.52 0.88

Removing/controlling invasive species 0.70 0.87

Monitoring invasive species 0.69 0.87

Educating others about invasive species 0.73 0.86

Attitude Index: Environment 0.82
∗Humans were created to rule over the rest of nature. 0.67 0.79
∗People have the right to modify the natural environment to suit their needs. 0.44 0.82
∗Plants and animals exist primarily to be used by people. 0.69 0.79
∗People need not to adapt to the natural environment because they can remake it to suit their needs. 0.49 0.81

I think most of the concern about environmental problems and issues is important to me. 0.42 0.82

I am concerned about the issue of invasive species. 0.29 0.83

There are already enough laws to protect the environment. 0.57 0.80

I would oppose any environmental regulations that would restrict my way of life. 0.59 0.80

Attitude index: technology 0.81

People are becoming slaves to computers. 0.49 0.79

Computers make me uncomfortable because I don’t understand them. 0.42 0.79

The use of computers is enhancing our standard of living. 0.56 0.78

Computers are responsible for many of the good things we enjoy. 0.44 0.79

Soon our lives will be controlled by computers. 0.40 0.80

Computers can eliminate a lot of tedious work for people. 0.32 0.80

There are unlimited possibilities of computer applications that have not even been thought of yet. 0.43 0.79

I feel intimidated by computers. 0.53 0.78

Computers are lessening the importance of too many jobs now done by humans. 0.54 0.78

Computers are a fast and efficient means of gaining information. 0.47 0.79

Life will be easier and faster with computers. 0.40 0.80

Computers are difficult to understand and frustrating to work with. 0.40 0.80

at each training site to test implementation of the plot
protocol. For each plot and its three nested subplots, vol-
unteers and professionals recorded presence/absence and
abundance data (Fig. 1). An evaluator recorded volun-
teers’ ability to set up the plot correctly in the field.

Statistical analyses

Using SPSS (Version 18; 2009), we transformed data,
where needed for normative residuals. We calculated
chi-square statistics to compare demographics between
control and treatment groups. We compared the abili-
ties of volunteers and professionals to correctly identify
species and to identify species by difficulty using chi-
square analyses. We used regression to assess correlations
between (1) volunteer accuracy and professional accu-

racy in species identification and (2) volunteer accuracy
and volunteer comfort level identifying species. Rhamnus

cathartica and R. frangula were merged for this and similar
analyses because comfort level was identified only to the
genus.

We scored GPS skills for each participant using points
for correctly identifying the datum and UTM zone
and navigating to the appropriate marker. Volunteers
received points if waypoints were located within a
15-m buffer zone of the marker. Because each participant
recorded five locations, these scores were divided by two
to weight their importance relative to other GPS skills.
GPS scores ranged between zero and 5.5.

We also compared the ability of volunteers and pro-
fessionals to correctly note the presence of “easy” and
“difficult” species in each plot. We used regression to
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Table 2 Six species taught during the two trainings in Wisconsin and

Colorado, including identification difficulty classification

Identification

Scientific name Common name State difficulty

R. cathartica L. Common Buckthorn WI Easy

Hesperis matronalis L. Dame’s Rocket WI Easy

Alliaria petiolata (M. Bieb.)

Cavara & Grande

Garlic Mustard WI Easy

R. frangulaMill. Glossy Buckthorn WI Difficult

C. orbiculatus Thunb. Asian Bittersweet WI Difficult

Lonicera sp. L. Honeysuckle WI Difficult

E. esula L. Leafy Spurge CO Easy

Linaria dalmatica (L.) Mill. Dalmation Toadflax CO Easy

Elaeagnus angustifolia L. Russian Olive CO Easy

Carduus nutans L. Musk Thistle CO Difficult

Cynoglossum officinale L. Houndstongue CO Difficult

Cardaria draba (L.) Desv. Whitetop CO Difficult

assess the ability of volunteers to correctly record species
presence compared to professionals. We also calculated
correlations between volunteers’ comfort level identify-
ing species and their accuracy at recording presence. We
ran a two-way ANOVA to look at significant differences
in cover estimates attributable to group, species, and the
interaction between these two factors.

We tested several social variables for their ability to
predict participant success at each skill. Each partici-
pant’s science literacy score was based on responses to
three science literacy questions. These were scored as
valid or invalid by three coders (Lacy and Riffe 1996).
This process produced an adequate interrater reliabil-
ity for science literacy responses (α = 0.69, 0.77, 0.70;
Krippendorff 2004). Total science literacy scores ranged
from zero to five.

Figure 1 The modified Forest Inventory Analysis (FIA) plot (see Barnett

etal.2007) servedaspartofour invasiveplant speciesmonitoringprotocol

for citizen scientists.

We generated experience, attitude toward the envi-
ronment, and attitude toward technology indices from
responses to several Likert scale questions from the
pretraining survey (Table 1). We tested for significant
differences in scores and indices between treatment and
control volunteers using t-tests. We used regression tree
analyses to evaluate which predictors (age, education,
science literacy score, experience index, attitude towards
the environment index) best predicted success at all but
one skill. We used multiple regression based on age, edu-
cation, GPS experience, and attitude towards technology
to predict trainees’ GPS score. As these variables had
low correlations among themselves, all were included in
analyses.

Results

Participant demographics

Our demographic results (Table 3) confirm that data can
be combined across states for both treatment (N = 59)
and control (N = 110) groups and that participants rep-
resented the sample population fairly well. Once merged,
we found no significant difference between treatment
and control groups for science literacy(t = 0.07;p = 0.95),
experience (t = –1.4; p = 0.15), attitude toward the en-
vironment (t = –0.66; p = 0.51), or attitude toward tech-
nology (t = –1.3; p = 0.21).

Performance with monitoring skills

Professionals identified species more accurately than vol-
unteers (88% vs. 72%; χ2 = 104; p < 0.01) who had 28%
false negative (species not identified when present) and
1% false positive (species identified when not present)
identifications, respectively (vs. 12% and <1% by the
professionals; Table 4). Volunteers correctly identified
“easy” species 82% of the time versus 65% for “difficult”
species (χ2 = 0.19; p = 0.67; Table 4). Self-identified com-
fort levels with identifying species proved fairly accurate
in predicting correct identification (r = 0.69; p = 0.04).
Across species, volunteer accuracy strongly paralleled the
accuracy of professionals in identifying species (r = 0.96;
p < 0.01).

Although 69% of volunteers had little or no prior ex-
perience using GPS, their average success after train-
ing was 75%. Most (85%) volunteers recorded the UTM
zone correctly and 84% recorded marker coordinates cor-
rectly. Recording the datum and navigating proved more
difficult with 64% and 67% correct, respectively (mean
GPS score: 4.2 ± 0.17).

Professionals were more accurate in recording the pres-
ence/absence of species within plots than volunteers
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Table 3 Demographics of participants (control and treatment groups) and nonparticipants. No significant differences existed between control and

treatment groups at each study site and nonparticipants in age, gender, education, or profession. Income did differ (χ2 = 16; p< 0.01) with participants

having higher income households. In Wisconsin, no differences existed between control and treatment groups for any demographic variable, but in

Colorado, the control group was younger than the treatment group (χ2 = 11; p = 0.05). Across both states, the control group had a greater percentage

of higher income households compared to the treatment group (χ2 = 7.8; p = 0.05). Differences in gender were almost significant (χ2 = 3.6; p = 0.06)

with a greater percentage of females in the treatment than control group. For those categories that the percentages do not add up to 100%, the remaining

portion did not respond. NA indicates no data available

Colorado Wisconsin

Nonparticipants Control Treatment Control Treatment

Age

18–24 15 3 4 7 6

25–34 13 26 0 11 3

35–44 8 18 14 10 16

45–54 10 20 18 16 16

55–64 27 24 50 32 29

65–75 21 9 14 22 29

Over 75 6 0 0 3 0

Gender

Male 42 35 18 41 29

Female 58 65 79 59 68

Education

Less than high school 0 0 0 0 0

High school/GED 0 3 0 3 3

Some college 17 6 14 7 16

2-Year college degree (associates) 4 9 0 3 3

4-Year college degree (BA, BS) 38 47 50 41 35

Master’s degree 33 23 25 30 32

Doctoral degree 6 9 11 12 6

Professional degree (MD, JD) 2 3 0 4 3

Profession

Student (nonscience emphasis) NA 0 0 1 0

Student (science emphasis) NA 9 0 3 13

Professor/teacher (nonscience emphasis) NA 9 7 16 6

Professor/teacher (science emphasis) NA 9 10 11 16

Scientist/engineer NA 9 10 12 3

Land manager NA 15 7 4 6

IT professional NA 8 4 3 3

Volunteer coordinator NA 0 4 4 6

Nonprofit administrator NA 0 4 0 3

Nonprofit employee NA 3 0 10 0

Other NA 38 54 36 42

Income

1 person working 25 26 43 32 29

2 or more people working 33 56 43 42 39

Savings/investments 21 9 7 21 23

Other 17 0 7 0 6

(91% vs. 82%; χ2 = 50; p < 0.01; Table 5). Species
identification difficulty affected accuracy (χ2 = 54; p
< 0.01), and volunteer and professional accuracy were
correlated (r = +0.68; p = 0.02). Comfort level with
species identification failed to predict volunteer suc-
cess in recording species’ presence/absence (R2 = 0.01;
p = 0.80).

Estimates of cover across species within plots did not
differ between volunteers and professionals (t = 1.8;
p = 0.08). Estimates of percent cover depended on species
(F = 172; p < 0.01) and the interaction between species
and group (F = 3.9; p < 0.01). Estimates of subplot cover
also depended on species (F = 15; p < 0.01), but was
not dependent on group (F = 0.34; p = 0.56) or the
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Table 4 The frequency of species within the search areas (out of 125 marked species) and the volunteer group’s average comfort level with these

species prior to the training (standard error in parentheses). Percent correct and false positive and false negative identifications are also shown for the

volunteers and professionals. “Easy” species are marked with an asterisk. The average across species, shown in bold type, includes both target and

nontarget species

Volunteers Professionals

Frequency Average False False False False

Species State of Species comfort level Correct (%) positive (%) negative (%) Correct (%) positive (%) negative (%)

R. cathartica∗ WI 23 3.3 (0.04)a 74 2 26 87 1 11

H. matronalis∗ WI 0 3.2 (0.04) NA <1 NA NA <1 NA

A. petiolata∗ WI 16 4.0 (0.03) 83 1 17 90 <1 10

C. orbiculatus WI 5 2.0 (0.03) 72 3 28 91 1 9

R. frangula WI 1 3.3 (0.04)a 27 2 73 63 3 37

Lonicera sp. WI 15 3.4 (0.04) 80 1 20 89 <1 11

L. dalmatica∗ CO 4 2.8 (0.04) 82 1 18 95 <1 5

E. esula∗ CO 26 3.0 (0.04) 90 2 10 96 1 4

E. angustifolia∗ CO 0 4.5 (0.02) NA <1 NA NA 0 NA

C. officinale CO 1 2.2 (0.04) 67 1 33 90 <1 10

C. nutans CO 21 2.9 (0.04) 87 1 13 94 <1 6

C. draba CO 1 1.8 (0.04) 54 2 46 80 <1 20

Average Across Species 72 1 28 88 <1 12

aComfort level for Rhamnus species was identified to the genus level only.

interaction between species and group (F = 0.72; p =
0.49; Fig. 2). Only 60% of the participants set the plot up
correctly in the field with many errors related to compass
use (70%).

Predictors of performance

Regression analyses revealed no significant predictors for
success at identifying species, observing species presence,
or success at GPS skills. Participants younger than 45 per-

formed better at plot setup, but the regression tree pro-
portional education in error value (similar to an R2 value
in regression) was low (0.15).

Discussion

Citizen science has the capacity to provide additional
resources for professional monitoring activities, improve
collaboration, and promote education (Bonney et al.
2009), allowing such programs to contribute significantly

Table 5 The frequency of species found within the five plots and the volunteers’ average comfort level with these species prior to the training (standard

error in parentheses). Percent correct for recorded presence/absence are also shown for the volunteers and professionals. “Easy” species are marked

with an asterisk

Species State Frequency of species Average comfort level Volunteers correct (%) Professionals correct (%)

R. cathartica∗ WI 5 3.3 (0.04)a 90 98

H. matronalis∗ WI 0 3.2 (0.04) 94 91

A. petiolata∗ WI 4 4.0 (0.03) 72 80

C. orbiculatus WI 5 2.0 (0.03) 59 96

R. frangula WI 4 3.3 (0.04)a 44 77

Lonicera sp. WI 4 3.4 (0.04) 75 91

L. dalmatica∗ CO 0 2.8 (0.04) 96 95

E. esula∗ CO 5 3.0 (0.04) 93 93

E. angustifolia∗ CO 1 4.5 (0.02) 98 96

C. officinale CO 0 2.2 (0.04) 95 95

C. nutans CO 3 2.9 (0.04) 88 90

C. draba CO 0 1.8 (0.04) 95 96

aComfort level for Rhamnus species was identified to the genus level only.

438 Conservation Letters 4 (2011) 433–442 Copyright and Photocopying: c©2011 Wiley Periodicals, Inc.



A. W. Crall et al. Assessing citizen science data quality

Figure 2 Comparison of cover estimates for all species in Wisconsin (A)

and Colorado (B) for volunteers and professionals. Horizontal bars repre-

sent standard errors for professionals, and vertical bars represent stan-

dard errors for volunteers. Species codes are AB = C. orbiculatus (Asian

Bittersweet); CB = R. cathartica (Common Buckthorn); GM = A. petiolata

(Garlic Mustard); GB = R. frangula (Glossy Buckthorn); HS = Lonicera sp.

(Honeysuckle); LS= E. esula (Leafy Spurge);MT=C. nutans (Musk Thistle);

and RO= E. angustifolia (Russian Olive). “Easy” species are shown in bold

type. Only eight species are displayed in the figure because cover esti-

mateswere onlymade on herbaceous species found in the 1-m2 subplots.

to conservation biology when appropriate protocols are
developed and applied across programs. We discuss our
results given the limitations of examining this sample
after 1 day of training. Our experience index tried to
assess learning gains over time based on prior experi-
ence/training, but its inability to predict performance
suggests additional research is needed in this area. Our
study is also limited to the species and conditions specific
to our study sites, but these findings can be applied to
other programs utilizing volunteer data collectors as
described below.

Lessons learned and their applications

Data quality assessments are needed for existing
monitoring programs

Our findings underscore the need to test accuracy rates
within existing monitoring protocols. The level of accu-
racy needed will likely depend on the research question
being examined and the ability to perform post-hoc statis-
tical manipulation on these data. Although skills testing
can be costly and logistically difficult, the results from this
and other studies suggest that data quality assumptions
cannot be made. Once proper protocols are established,
they should be standardized and data quality maintained
via regular monitoring of performance to ensure that
training and sampling design remain adequate (Danielsen
et al. 2005).

Species identification training needs to be
extended and vouchers included in the protocol

Accurate taxonomic identification requires years of spe-
cialized training and remains a barrier of data quality
among diverse data collectors. In our study, many vol-
unteers brought skills with them to the training that
ranged from a general interest in botany to formal taxo-
nomic training. Although experience has predicted suc-
cess in some programs (McLaren and Cadman 1999;
Nerbonne et al. 2008), this was not the case in ours and
other studies (Genet and Sargent 2003; Mumby et al.
1995). These differences could be attributed to the level of
skill required to implement the protocol being tested, the
range of experience levels within the study population,
or the way in which experience was defined within the
study.

Rates of misidentification generally depend on the
identification difficulty of a given species. Bloniarz and
Ryan (1996) found that volunteers performed better
when identifying higher taxonomic categories that dif-
fered more dramatically in physical characteristics. In
another study, volunteers and professionals differed
in recording the frequencies of particular Ulmus and
Quercus species but not when pooled by genus (Brandon
et al. 2003).

Errors in species identification among data collectors
could be handled in numerous ways. Protocols that uti-
lize volunteers could include species for which correct
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identification rates are high while leaving difficult species
to taxonomists. Requiring voucher specimens to be col-
lected for verification could prevent errors but would re-
quire expert time to process. Photographing geolocated
specimens might be more feasible for checking the ac-
curacy of species identifications, especially if instructions
were provided on what physical characteristics need to
be photographed to allow efficient taxonomic screen-
ing. Smartphone applications, like Leafsnap that uses vi-
sual recognition software to help identify tree species
from photographs, show promise for advancing accurate
species identification.

Volunteers can easily acquire skills to geolocate
species

The use of geographic information systems and GPS in
natural resource management is growing. Although cit-
izen science programs have begun taking advantage of
these technologies (Crall et al. 2010), we are unaware of
other studies evaluating the accuracy of GPS use by vol-
unteers (but see Jones et al. 2008; Rist et al. 2010). Most of
our participants had little or no experience with GPS use
prior to our training but were generally able to use this
tool successfully. The main limitation of these technolo-
gies may be making them available to large numbers of
volunteers (Crall et al. 2010). The creation of a network
of ”technology libraries” that host GPS units and other
monitoring resources to be checked out for use during
volunteer surveys could remedy this.

Volunteers can implement plot-based assessments

Numerous inventories use multiscale plots to assess
changes in species distributions and abundance over time
(Stohlgren 2007). A network of plot locations randomly
placed across a stratified landscape would provide data
to more effectively manage plant species. Data from this
study indicate that citizen scientists could successfully
contribute to such a monitoring network as volunteers
and professionals performed similarly in recording pres-
ence/absence for most species in field plots.

We often use visual estimates of cover to infer the
abundance of plant species, and these estimates usu-
ally vary among observers (Kennedy and Addison 1987;
Stohlgren 2007; Tonterri 1990). We found that estimated
cover values did not differ between groups, and volun-
teers and professionals tended to under- or overestimate
cover differently for different species. Considering the
known variability in ocular cover estimates and these
findings, we feel volunteers could provide fairly reliable
cover estimates if given proper training and a standard-
ized protocol. Similarly, the ability to reliably set up plots
should improve with additional compass training.

Recommendations for future research

Assess working in groups

Although we sought to test volunteers independently,
another study that grouped volunteers by differing lev-
els of experience proved more successful than our study
(Bloniarz and Ryan 1996). Percentage of agreement in
tree identification between arborists and volunteer teams
(with one member experienced in tree identification)
averaged 94% when identified to genus and 80% when
identified to species (Bloniarz and Ryan 1996). Grouping
volunteers with professionals through established mon-
itoring networks could provide efficient and successful
ways to implement monitoring programs (while perhaps
adding to its social dimension to make such efforts more
attractive).

Assess volunteer certification

Certifying volunteers in particular skills may also prove
beneficial. Certification not only provides a feeling
of pride and accomplishment for volunteers but also
demonstrates his/her long-term commitment to a pro-
gram, improving volunteer retention (Bell et al. 2008).
Master naturalists programs established throughout the
United States provide a great example of a successful cer-
tification model (Main 2004).

Assess technology’s role in data quality

Technological advancements can improve the ways we
implement successful sampling designs. Several citizen
science programs have developed online data entry forms
with automated error checking capabilities (Bonney et al.

2009; Crall et al. 2010). These forms flag suspect data
to allow further expert investigation prior to their inte-
gration in a widely used dataset. Similarly, smartphone
applications have been developed that allow automated
entry of location coordinates associated with a species
sighting (Crall et al. 2010). These sightings could include
a photo voucher or an identification tag for a specimen
voucher. Although the ability of these tools to improve
data quality has not been thoroughly tested, it is likely
that they could improve data quality among all data col-
lectors (Stevenson et al. 2003; Williams et al. 2006).

Determine eligibility criteria for specific skills that
can be adopted across programs

Although this study failed to identify reliable predictors
of performance among our volunteers, different variables
or modifications to our indices may have better pre-
dicted volunteer performance. We generated our expe-
rience index using a five-point Likert scale. More detailed
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qualitative data on years of experience with each skill
may improve our ability to predict performance as may
measures of self-efficacy.

Self-efficacy, defined as an individual’s perceived ca-
pabilities to perform a specific task (Bandura 1994), has
been a cornerstone of psychology research. Its ability
to predict performance in work and education settings
has been thoroughly reviewed (Judge et al. 2007; Usher
and Pajares 2008), but its potential role in volunteer
data quality needs further examination based on the re-
sults found in this study. Our results also underscore
the need for more interdisciplinary approaches when ad-
dressing these research questions. This information is
easy to obtain from volunteers and could be used to
efficiently focus training on particular volunteers and
species (Genet and Sargent 2003; McLaren and Cadman
1999).

We further recommend that conservation organiza-
tions collaborate with scientists developing and evalu-
ating citizen science monitoring networks. Taking ad-
vantage of existing assessments helps strengthen existing
programs and further standardizes the monitoring pro-
tocols already in existence (Bonney et al. 2009). As citi-
zen science continues to grow, collaboration among ex-
isting and future partners will be essential to its success
as a conservation and outreach tool connecting scientists
more effectively with the public.
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